Slices of the Takagi function

Roope Anttila
joint with B. Bárány and A. Käenmäki
4.7.2023

Fractal Geometry Workshop, ICMS, Bayes Centre, Edinburgh

Takagi function

$$
T_{\lambda}(x)=\sum_{k=0}^{\infty} \lambda^{k} \operatorname{dist}\left(2^{k} x, \mathbb{Z}\right) .
$$

Takagi function

Figure: Graphs of T_{λ} for $\lambda=1 / 2, \lambda=2 / 3$ and $\lambda=3 / 4$.

$$
T_{\lambda}(x)=\sum_{k=0}^{\infty} \lambda^{k} \operatorname{dist}\left(2^{k} x, \mathbb{Z}\right)
$$

Takagi function

Figure: Graphs of T_{λ} for $\lambda=1 / 2, \lambda=2 / 3$ and $\lambda=3 / 4$.

$$
T_{\lambda}(x)=\sum_{k=0}^{\infty} \lambda^{k} \operatorname{dist}\left(2^{k} x, \mathbb{Z}\right)
$$

Question

What can we say about the dimensions of the slices of T_{λ} ?

Self-affine set

Figure: The Takagi function is an attractor of an affine IFS

Weak tangents and Assouad dimension

Let $X \subset \mathbb{R}^{2}$ be compact and $T_{x, r}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a similarity taking $Q(x, r):=x+[0, r]^{2}$ to the unit cube $Q=[0,1]^{2}$ in an orientation preserving way.

Weak tangents and Assouad dimension

Let $X \subset \mathbb{R}^{2}$ be compact and $T_{x, r}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a similarity taking $Q(x, r):=x+[0, r]^{2}$ to the unit cube $Q=[0,1]^{2}$ in an orientation preserving way. If there is a sequence $T_{x_{n}, r_{n}}$, such that $r_{n} \rightarrow 0$ and

$$
T_{x_{n}, r_{n}}(X) \cap Q \rightarrow T
$$

in the Hausdorff distance, then T is called a weak tangent of X. The collection of weak tangents of X is denoted by $\operatorname{Tan}(X)$.

Weak tangents and Assouad dimension

Let $X \subset \mathbb{R}^{2}$ be compact and $T_{x, r}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a similarity taking $Q(x, r):=x+[0, r]^{2}$ to the unit cube $Q=[0,1]^{2}$ in an orientation preserving way. If there is a sequence $T_{x_{n}, r_{n}}$, such that $r_{n} \rightarrow 0$ and

$$
T_{x_{n}, r_{n}}(X) \cap Q \rightarrow T
$$

in the Hausdorff distance, then T is called a weak tangent of X. The collection of weak tangents of X is denoted by $\operatorname{Tan}(X)$.

Theorem (Käenmäki-Ojala-Rossi, 2018)
If $X \subset \mathbb{R}^{2}$ is a compact set, then

$$
\operatorname{dim}_{\mathrm{A}}(X)=\max \left\{\operatorname{dim}_{\mathrm{H}}(T): T \in \operatorname{Tan}(X)\right\}
$$

Main result

By interpreting the Takagi function as a self-affine set, we get the following result:

Main result

By interpreting the Takagi function as a self-affine set, we get the following result:

Theorem (A.-Bárány-Käenmäki, 2023)
If T_{λ} is the graph of the Takagi function, with $\frac{1}{2}<\lambda<1$, then

$$
\max _{\substack{x \in T_{\lambda} \\ V \in \mathbb{R}^{1}}} \operatorname{dim}_{H}\left(T_{\lambda} \cap(V+x)\right)=\operatorname{dim}_{A}\left(T_{\lambda}\right)-1
$$

Main result

By interpreting the Takagi function as a self-affine set, we get the following result:

Theorem (A.-Bárány-Käenmäki, 2023)
If T_{λ} is the graph of the Takagi function, with $\frac{1}{2}<\lambda<1$, then

$$
\operatorname{dim}_{\mathrm{A}}\left(T_{\lambda}\right)=1+\max _{\substack{x \in T_{\lambda} \\ V \in \mathbb{R}^{1}}} \operatorname{dim}_{\mathrm{H}}\left(T_{\lambda} \cap(V+x)\right)
$$

Proof

Proof

Proof

Proof

- Weak tangents are (almost) a product set.

Proof
 Proof

Proof

Proof

$\Rightarrow \Longrightarrow \operatorname{dim}_{\mathrm{A}}\left(T_{\lambda}\right) \leqslant 1+\max \operatorname{dim}_{\mathrm{H}}\left(T_{\lambda} \cap(V+x)\right)$.

- Since the fibers are one dimensional, this turns out to be sharp.

Thank you for your attention!

